AWS ramps up SageMaker tools at Re:Invent

Cloud giant loads more capabilities into its machine learning hub with AWS SageMaker Studio

CEO Andy Jassy announced a barrage of new machine learning capabilities for AWS SageMaker during his re:Invent keynote on Tuesday.

SageMaker is Amazon's big machine learning hub that aims to remove most of the heavy lifting for developers and let them use ML more expansively. Launched in 2017, there have been numerous features and capabilities introduced over the years, with more than 50 added to it in 2019 alone.

Of the SageMaker announcements made at the company's annual conference in Las Vegas, the biggest was AWS SageMaker Studio, an IDE that allows developers and data scientists to build, code, develop, train and tune machine learning workflows all in a single interface. Within it information can be viewed, stored, collected and used to collaborate with others through the studio.

AWS SageMaker Studio

In addition to SageMaker Studio, the company announced a further five new capabilities: Notebooks, Experiment Management, Autopilot, Debugger and Model Monitor.

The first of these is described as a 'one-click' notebook with elastic compute.

"In the past, Notebooks is frequently where data scientists would work and it was associated with a single EC2 instance," explained Larry Pizette, the global head of ML solutions Lab. "If a developer or data scientist wanted to switch capabilities, so they wanted more compute capacity, for instance, they had to shut that down and instantiate a whole new notebook.

"This can now be done dynamically, in just seconds, so they can get more compute or GPU capability for doing training or inference, so its a huge improvement over what was done before."

All of the updates to SageMaker have a specific purpose to simplify the machine learning workflows, like Experiment Management, which enables developers to visualise and compare ML model iterations, training parameters, and outcomes.

Autopilot lets developers submit simple data in CSV files and have ML models automatically generated. SageMaker Debugger provides real-time monitoring for ML models to improve predictive accuracy, reduce training times.

And finally, Amazon SageMaker Model Monitor detects concept drift to discover when the performance of a model running in production begins to deviate from the original trained model.

"We recognised that models get used over time and there can be changes to the underlying assumptions that the models were built with - such as housing prices which inflate," said Pizette. "If interest rates change it will affect the prediction of whether a person will by a home or not."

"When the model is initially built to keep statistics, it will notice what we call 'Concept Drift' if that concept drift is happening, and the model gets out of sync with the current conditions, it will identify where that's happening and provide the developer or data scientist with the information to help them retrain and retool that model."

The company also announced a ML service to help write code - AWS Code Guru. This is an automated tool that's been trained on several decades of code reviews at Amazon, according to the company. If it discovers an issue, it will add human-readable comments to pull requests that identify lines of code with a specific issue and recommended remediation, including example code and links to relevant documentation.

Featured Resources

Consumer choice and the payment experience

A software provider's guide to getting, growing, and keeping customers

Download now

Prevent fraud and phishing attacks with DMARC

How to use domain-based message authentication, reporting, and conformance for email security

Download now

Business in the new economy landscape

How we coped with 2020 and looking ahead to a brighter 2021

Download now

How to increase cyber resilience within your organisation

Cyber resilience for dummies

Download now

Recommended

Taming the machine: AI Governance
artificial intelligence (AI)

Taming the machine: AI Governance

29 Apr 2021
Panasonic finalizes deal to acquire supply chain firm Blue Yonder
Acquisition

Panasonic finalizes deal to acquire supply chain firm Blue Yonder

23 Apr 2021
10 keys to AI success in 2021
Whitepaper

10 keys to AI success in 2021

10 Mar 2021
MLOps 101: The foundation for your AI strategy
Whitepaper

MLOps 101: The foundation for your AI strategy

10 Mar 2021

Most Popular

How to find RAM speed, size and type
Laptops

How to find RAM speed, size and type

16 Jun 2021
What is HTTP error 400 and how do you fix it?
Network & Internet

What is HTTP error 400 and how do you fix it?

16 Jun 2021
Ten-year-old iOS 4 recreated as an iPhone app
iOS

Ten-year-old iOS 4 recreated as an iPhone app

10 Jun 2021