IBM unveils the world’s first quad-core AI accelerator chip

The chip can be scaled for commercial use in hybrid-cloud environments

IBM logo on a brown background

IBM has unveiled the world’s first quad-core artificial intelligence (AI) accelerator chip, built using seven-nanometer (7nm) MOSFET technology.

The company says it has optimized the novel chip for low-precision workloads with support for many AI models.

"In a new paper presented at the 2021 International Solid-State Circuits Virtual Conference (ISSCC), our team details the world’s first energy-efficient AI chip at the vanguard of low precision training and inference built with 7nm technology," said IBM researchers Ankur Agrawal and Kailash Gopalakrishnan. 

"Through its novel design, the AI hardware accelerator chip supports a variety of model types while achieving leading edge power efficiency on all of them."

AI accelerators are specialized hardware designed to enhance AI applications’ performance, including deep learning, machine learning, and neural networks. They use in-memory computing or low-precision arithmetic, resulting in faster execution of large and complex AI algorithms

IBM claims its new AI accelerator chip is the first to include an ultra-low precision hybrid 8-bit floating-point (HFP8) format for training deep learning models in a silicon technology node (7 nm EUV-based chip). The chip can also self-maximize its performance by slowing down during high-power computation phases, thanks to an integrated power-management feature.  

Related Resource

Six reasons to accelerate remote asset monitoring with AI

How to optimise resources, increase productivity, and grow profit margins with AI

Why you should accelerate remote access monitoring with AI - whitepaper from IBMDownload now

Furthermore, IBM said its AI chip “routinely achieved more than 80% utilization for training and more than 60% utilization for inference” as compared to mainstream GPU utilizations, which are typically below 30%.

According to IBM, the chip technology can be scaled and deployed commercially to support large-scale deep learning models in the cloud.

“Our new AI core and chip can be used for many new cloud to edge applications across multiple industries. For instance, they can be used for cloud training of large-scale deep learning models in vision, speech and natural language processing using 8-bit formats (vs. the 16- and 32-bit formats currently used in the industry),” said IBM.

“They can also be used for cloud inference applications, such as for speech to text AI services, text to speech AI services, NLP services, financial transaction fraud detection and broader deployment of AI models in financial services.”

Featured Resources

B2B under quarantine

Key B2C e-commerce features B2B need to adopt to survive

Download now

The top three IT pains of the new reality and how to solve them

Driving more resiliency with unified operations and service management

Download now

The five essentials from your endpoint security partner

Empower your MSP business to operate efficiently

Download now

How fashion retailers are redesigning their digital future

Fashion retail guide

Download now

Recommended

Preparing for AI-enabled cyber attacks
Whitepaper

Preparing for AI-enabled cyber attacks

22 Jul 2021
IBM teams with Scale Computing to deliver edge solutions at scale
hybrid cloud

IBM teams with Scale Computing to deliver edge solutions at scale

21 Jul 2021
Unilabs to deploy Ibex’s AI-assisted cancer diagnostic platform across Europe
artificial intelligence (AI)

Unilabs to deploy Ibex’s AI-assisted cancer diagnostic platform across Europe

21 Jul 2021
IBM acquires hybrid data firm Bluetab Solutions
mergers and acquisitions

IBM acquires hybrid data firm Bluetab Solutions

15 Jul 2021

Most Popular

The benefits of workload optimisation
Sponsored

The benefits of workload optimisation

16 Jul 2021
Samsung Galaxy S21 5G review: A rose-tinted experience
Mobile Phones

Samsung Galaxy S21 5G review: A rose-tinted experience

14 Jul 2021
IT Pro Panel: Why IT leaders need soft skills
professional development

IT Pro Panel: Why IT leaders need soft skills

26 Jul 2021