"Miracle material" could end smashed smartphones

Research creates new material that could make more durable devices and boost battery life

Smartphone in hands

A "miracle material" could end smashed smartphone screens and dead batteries, thanks to research led by a scientist at Queen's University in Belfast.

Dr Elton Santos, of the school of mathematics and physics, has been working with scientists from around the world on new materials for smartphones in the hopes of making more durable, useful materials for manufacturing such devices.

The researchers combined semiconducting molecules called C60 with layered, lightweight and flexible materials notably graphene and hexagonal boron nitrite (hBN). C60 can transform sunlight into electricity, while hBN brings stability and electronic compatibility to graphene, a thin material that could take the place of silicon, they said.

Such a combination of features doesn't exist in any material naturally, the researchers noted, with Dr Santos saying the "miracle material" would be similar to silicon but with "improved chemical stability, lightness and flexibility, which could potentially be used in smart devices and would be much less likely to break"

The material can be used "to create new chip-related components, or displays that would show several features," Dr Santos told IT PRO, adding that could include photo-voltaic properties such as the conversion of solar energy in electricity to recharge the phone battery.

"On the resistance side, a potential screen fabricated with this new combination could be much stronger than any other material used so far," he added. "This is mainly due to the properties of the individual compounds are superior to what is currently used in displays or screens. It will be also flexible."

The findings were published in ACS Nano and highlight one issue with the material's recipe, as it lacks a "band gap", a key element that allows the on-off switching operations that run such electronics. Dr Santos' team may already have a solution, transition metal dichalcogenides (TMDs).

"By using these findings, we have now produced a template but in future we hope to add an additional feature with TMDs," he said in a statement. "These are semiconductors, which bypass the problem of the band gap, so we now have a real transistor on the horizon."

Featured Resources

Navigating the new normal: A fast guide to remote working

A smooth transition will support operations for years to come

Download now

Leading the data race

The trends driving the future of data science

Download now

How to create 1:1 customer experiences at scale

Meet the technology capable of delivering the personalisation your customers crave

Download now

How to achieve daily SAP releases

Accelerate the pace of SAP change to support your digital strategy

Download now

Most Popular

16 ways to speed up your laptop
Laptops

16 ways to speed up your laptop

16 Sep 2020
16 ways to speed up your laptop
Laptops

16 ways to speed up your laptop

16 Sep 2020
The Xbox Series X shows how far the cloud still has to go
Cloud

The Xbox Series X shows how far the cloud still has to go

25 Sep 2020