"Miracle material" could end smashed smartphones

Research creates new material that could make more durable devices and boost battery life

Smartphone in hands

A "miracle material" could end smashed smartphone screens and dead batteries, thanks to research led by a scientist at Queen's University in Belfast.

Dr Elton Santos, of the school of mathematics and physics, has been working with scientists from around the world on new materials for smartphones in the hopes of making more durable, useful materials for manufacturing such devices.

The researchers combined semiconducting molecules called C60 with layered, lightweight and flexible materials notably graphene and hexagonal boron nitrite (hBN). C60 can transform sunlight into electricity, while hBN brings stability and electronic compatibility to graphene, a thin material that could take the place of silicon, they said.

Such a combination of features doesn't exist in any material naturally, the researchers noted, with Dr Santos saying the "miracle material" would be similar to silicon but with "improved chemical stability, lightness and flexibility, which could potentially be used in smart devices and would be much less likely to break"

Advertisement
Advertisement - Article continues below

The material can be used "to create new chip-related components, or displays that would show several features," Dr Santos told IT PRO, adding that could include photo-voltaic properties such as the conversion of solar energy in electricity to recharge the phone battery.

"On the resistance side, a potential screen fabricated with this new combination could be much stronger than any other material used so far," he added. "This is mainly due to the properties of the individual compounds are superior to what is currently used in displays or screens. It will be also flexible."

The findings were published in ACS Nano and highlight one issue with the material's recipe, as it lacks a "band gap", a key element that allows the on-off switching operations that run such electronics. Dr Santos' team may already have a solution, transition metal dichalcogenides (TMDs).

"By using these findings, we have now produced a template but in future we hope to add an additional feature with TMDs," he said in a statement. "These are semiconductors, which bypass the problem of the band gap, so we now have a real transistor on the horizon."

Featured Resources

Application security fallacies and realities

Web application attacks are the most common vulnerability, so what is the truth about application security?

Download now

Your first step researching Managed File Transfer

Advice and expertise on researching the right MFT solution for your business

Download now

The KPIs you should be measuring

How MSPs can measure performance and evaluate their relationships with clients

Download now

Life in the digital workspace

A guide to technology and the changing concept of workspace

Download now
Advertisement

Most Popular

Visit/business-strategy/mergers-and-acquisitions/354191/xerox-threatens-hostile-takeover-after-hp-rebuffs
mergers and acquisitions

Xerox threatens hostile takeover after HP rebuffs $30bn takeover

22 Nov 2019
Visit/security/ransomware/354171/microsoft-issues-statement-debunking-teams-ransomware-rumours
ransomware

Microsoft issues statement debunking Teams ransomware rumours

21 Nov 2019
Visit/public-cloud/34850/salesforce-takes-aws-relationship-to-the-next-level
News

Salesforce takes AWS relationship to the next level

19 Nov 2019
Visit/mobile/5g/354161/tests-show-uks-5g-network-is-450-faster-than-4g
5G

Tests show UK's 5G network is 450% faster than 4G

20 Nov 2019