"Miracle material" could end smashed smartphones

Research creates new material that could make more durable devices and boost battery life

Smartphone in hands

A "miracle material" could end smashed smartphone screens and dead batteries, thanks to research led by a scientist at Queen's University in Belfast.

Dr Elton Santos, of the school of mathematics and physics, has been working with scientists from around the world on new materials for smartphones in the hopes of making more durable, useful materials for manufacturing such devices.

Advertisement - Article continues below

The researchers combined semiconducting molecules called C60 with layered, lightweight and flexible materials notably graphene and hexagonal boron nitrite (hBN). C60 can transform sunlight into electricity, while hBN brings stability and electronic compatibility to graphene, a thin material that could take the place of silicon, they said.

Such a combination of features doesn't exist in any material naturally, the researchers noted, with Dr Santos saying the "miracle material" would be similar to silicon but with "improved chemical stability, lightness and flexibility, which could potentially be used in smart devices and would be much less likely to break"

The material can be used "to create new chip-related components, or displays that would show several features," Dr Santos told IT PRO, adding that could include photo-voltaic properties such as the conversion of solar energy in electricity to recharge the phone battery.

Advertisement
Advertisement - Article continues below

"On the resistance side, a potential screen fabricated with this new combination could be much stronger than any other material used so far," he added. "This is mainly due to the properties of the individual compounds are superior to what is currently used in displays or screens. It will be also flexible."

Advertisement - Article continues below

The findings were published in ACS Nano and highlight one issue with the material's recipe, as it lacks a "band gap", a key element that allows the on-off switching operations that run such electronics. Dr Santos' team may already have a solution, transition metal dichalcogenides (TMDs).

"By using these findings, we have now produced a template but in future we hope to add an additional feature with TMDs," he said in a statement. "These are semiconductors, which bypass the problem of the band gap, so we now have a real transistor on the horizon."

Featured Resources

Preparing for long-term remote working after COVID-19

Learn how to safely and securely enable your remote workforce

Download now

Cloud vs on-premise storage: What’s right for you?

Key considerations driving document storage decisions for businesses

Download now

Staying ahead of the game in the world of data

Create successful marketing campaigns by understanding your customers better

Download now

Transforming productivity

Solutions that facilitate work at full speed

Download now
Advertisement

Most Popular

Visit/mobile/google-android/356373/over-2-dozen-additional-android-apps-found-stealing-user-data
Google Android

Over two dozen Android apps found stealing user data

7 Jul 2020
Visit/laptops/29190/how-to-find-ram-speed-size-and-type
Laptops

How to find RAM speed, size and type

24 Jun 2020
Visit/cloud/356260/the-road-to-recovery
Sponsored

The road to recovery

30 Jun 2020