Gluon provides machine learning for AWS and Azure

Amazon and Microsoft unveil artificial intelligence ecosystem

Amazon and Microsoft have launched a new open-source deep learning interface called Gluon. 

The artificial intelligence system has been jointly developed by the companies to let developers "prototype, build, train and deploy sophisticated machine learning models for the cloud, devices at the edge and mobile apps", according to the companies. 

Advertisement - Article continues below

Dr Matt Wood, general manager of Deep Learning and AI at AWS, said that Gluon provides a clear, concise API (application programming interface) for defining machine learning models using a collection of pre-built, optimised neural network components.

"Developers who are new to machine learning will find this interface more familiar to traditional code since machine learning models can be defined and manipulated just like any other data structure. More seasoned data scientists and researchers will value the ability to build prototypes quickly and utilize dynamic neural network graphs for entirely new model architectures, all without sacrificing training speed," he said.

Eric Boyd, CVP of AI Data and Infrastructure at Microsoft, said that Gluon could be used with either Apache MXNet or Microsoft Cognitive Toolkit, and will be supported in all Azure services, tools and infrastructure. 

"Gluon offers an easy-to-use interface for developers, highly-scalable training, and efficient model evaluationall without sacrificing flexibility for more experienced researchers," he added.

Gluon will support symbolic and imperative programming, something that is not found in other toolkits, claimed Microsoft. It will also include fully symbolic automatic differentiation of code that has been procedurally executed including control flow. This is achieved from hybridisation: static compute graphs are computed the first time and then cached and reused for subsequent iterations. The compute graphs can also be exported, e.g., for serving on mobile devices, said Boyd.

Advertisement - Article continues below
Advertisement - Article continues below

There is also a built-in layers library that simplifies the task of defining complex model architectures through reuse of the pre-built building blocks from the library. 

As well as this, there is native support for loops and ragged tensors (batching variable length sequences) which translates into execution efficiency for RNN and LSTM models. It also supports sparse and quantised data and operations, both for computation and communication. Gluon also provides advanced scheduling on multiple GPUs.

"This is another step in fostering an open AI ecosystem to accelerate innovation and democratisation of AI-making it more accessible and valuable to all," said Boyd. "With Gluon, developers will be able to deliver new and exciting AI innovations faster by using a higher-level programming model and the tools and platforms they are most comfortable with." 

Featured Resources

Preparing for long-term remote working after COVID-19

Learn how to safely and securely enable your remote workforce

Download now

Cloud vs on-premise storage: What’s right for you?

Key considerations driving document storage decisions for businesses

Download now

Staying ahead of the game in the world of data

Create successful marketing campaigns by understanding your customers better

Download now

Transforming productivity

Solutions that facilitate work at full speed

Download now


Careers & training

The UK should follow Finland's lead with it comes to AI training

19 Dec 2019
Business strategy

What is machine learning?

27 Sep 2019
Marketing & comms

AI is just clever marketing, and I’m not buying

20 Sep 2019

AI can play poker, but I’m neither shaken nor stirred

16 Jul 2019

Most Popular


How to find RAM speed, size and type

24 Jun 2020
Google Android

Over two dozen Android apps found stealing user data

7 Jul 2020

The road to recovery

30 Jun 2020