MIT researchers hail "liquid" algorithm breakthrough

A set of differential equations at the base of an algorithm could lead to a more adaptable type of machine learning

A digital depiction of a neural network

Researchers at MIT say they have developed a flexible algorithm that can change its underlying equations to continuously adapt to new inputs of data.

The "liquid" algorithm is said to be a new type of neural network that learns during tasks rather than just in its initial training phase.

It's hoped this new approach could revolutionise technology that relies on decision-making protocols where the data changes over time, or in unpredictable environments, such as medical diagnosis or autonomous driving.

The research will be presented at the AAAI Conference, an artificial intelligence event taking place in Vancouver, Canada, in February.

"This is a way forward for the future of robot control, natural language processing, video processing - any form of time series data processing," says Ramin Hasani, the study's lead author. "The potential is really significant."

Most neural networks have fixed behaviour and they typically don't adjust all that well to changes in incoming data streams. For example, the crash of an Uber autonomous vehicle in 2018 that resulted in the death of Elaine Herzberg, considered the first fatality involving the technology, was said to have been caused by the system being unable to identify the shape of a pedestrian when they were walking alongside a bicycle.

Related Resource

Unleashing the power of AI initiatives with the right infrastructure

What key infrastructure requirements are needed to implement AI effectively?

What key infrastructure requirements are needed to implement AI effectively?Download now

The neural network designed by Hasani has the potential to avoid these issues by using a set of differential equations as the base of its algorithm, potentially creating a more fluid type of machine learning. The idea is inspired by the microscopic nematode, Caenorhabditis (C) elegans, which has only 302 neurons in its nervous system. Hasani said they can still "generate unexpectedly complex dynamics".

Similarly, Hasani and his team used equations that allowed the parameters of his neural network to change over time. These are essentially a nested set of differential equations that change the representation of the neuron, creating a small number of highly "expressive" ones, according to Hasani.

"We have a provably more expressive neural network that is inspired by nature," Hasani said. "But this is just the beginning of the process. The obvious question is how do you extend this? We think this kind of network could be a key element of future intelligence systems."

Featured Resources

BCDR buyer's guide for MSPs

How to choose a business continuity and disaster recovery solution

Download now

The definitive guide to IT security

Protecting your MSP and your customers

Download now

Cost of a data breach report 2020

Find out what factors help mitigate breach costs

Download now

The complete guide to changing your phone system provider

Optimise your phone system for better business results

Download now

Recommended

Taming the machine: AI Governance
artificial intelligence (AI)

Taming the machine: AI Governance

29 Apr 2021
Panasonic finalizes deal to acquire supply chain firm Blue Yonder
Acquisition

Panasonic finalizes deal to acquire supply chain firm Blue Yonder

23 Apr 2021
10 keys to AI success in 2021
Whitepaper

10 keys to AI success in 2021

10 Mar 2021
MLOps 101: The foundation for your AI strategy
Whitepaper

MLOps 101: The foundation for your AI strategy

10 Mar 2021

Most Popular

KPMG offers staff 'four-day fortnight' in hybrid work plans
flexible working

KPMG offers staff 'four-day fortnight' in hybrid work plans

6 May 2021
Dell patches vulnerability affecting hundreds of computer models worldwide
cyber security

Dell patches vulnerability affecting hundreds of computer models worldwide

5 May 2021
16 ways to speed up your laptop
Laptops

16 ways to speed up your laptop

29 Apr 2021